235 research outputs found

    Generalized Flows around Neutron Stars

    Full text link
    In this chapter, we present a brief and non-exhaustive review of the developments of theoretical models for accretion flows around neutron stars. A somewhat chronological summary of crucial observations and modelling of timing and spectral properties are given in sections 2 and 3. In section 4, we argue why and how the Two-Component Advective Flow (TCAF) solution can be applied to the cases of neutron stars when suitable modifications are made for the NSs. We showcase some of our findings from Monte Carlo and Smoothed Particle Hydrodynamic simulations which further strengthens the points raised in section 4. In summary, we remark on the possibility of future works using TCAF for both weakly magnetic and magnetic Neutron Stars.Comment: 15 pages, 7 figures. arXiv admin note: text overlap with arXiv:1901.0084

    Technical and Comparative Aspects of Brain Glycogen Metabolism.

    Get PDF
    It has been known for over 50 years that brain has significant glycogen stores, but the physiological function of this energy reserve remains uncertain. This uncertainty stems in part from several technical challenges inherent in the study of brain glycogen metabolism, and may also stem from some conceptual limitations. Factors presenting technical challenges include low glycogen content in brain, non-homogenous labeling of glycogen by radiotracers, rapid glycogenolysis during postmortem tissue handling, and effects of the stress response on brain glycogen turnover. Here, we briefly review aspects of glycogen structure and metabolism that bear on these technical challenges, and discuss ways these can be overcome. We also highlight physiological aspects of glycogen metabolism that limit the conditions under which glycogen metabolism can be useful or advantageous over glucose metabolism. Comparisons with glycogen metabolism in skeletal muscle provide an additional perspective on potential functions of glycogen in brain

    Motor expertise modulates the unconscious processing of human body postures

    Get PDF
    Little is known about the cognitive background of unconscious visuomotor control of complex sports movements. Therefore, we investigated the extent to which novices and skilled high-jump athletes are able to identify visually presented body postures of the high jump unconsciously. We also asked whether or not the manner of processing differs (qualitatively or quantitatively) between these groups as a function of their motor expertise. A priming experiment with not consciously perceivable stimuli was designed to determine whether subliminal priming of movement phases (same vs. different movement phases) or temporal order (i.e. natural vs. reversed movement order) affects target processing. Participants had to decide which phase of the high jump (approach vs. flight phase) a target photograph was taken from. We found a main effect of temporal order for skilled athletes, that is, faster reaction times for prime-target pairs that reflected the natural movement order as opposed to the reversed movement order. This result indicates that temporal-order information pertaining to the domain of expertise plays a critical role in athletes’ perceptual capacities. For novices, data analyses revealed an interaction between temporal order and movement phases. That is, only the reversed movement order of flight-approach pictures increased processing time. Taken together, the results suggest that the structure of cognitive movement representation modulates unconscious processing of movement pictures and points to a functional role of motor representations in visual perception

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    Complement and the Alternative Pathway Play an Important Role in LPS/D-GalN-Induced Fulminant Hepatic Failure

    Get PDF
    Fulminant hepatic failure (FHF) is a clinically severe type of liver injury with an extremely high mortality rate. Although the pathological mechanisms of FHF are not well understood, evidence suggests that the complement system is involved in the pathogenesis of a variety of liver disorders. In the present study, to investigate the role of complement in FHF, we examined groups of mice following intraperitoneal injection of LPS/D-GalN: wild-type C57BL/6 mice, wild-type mice treated with a C3aR antagonist, C5aR monoclonal antibody (C5aRmAb) or CR2-Factor H (CR2-fH, an inhibitor of the alternative pathway), and C3 deficient mice (C3−/− mice). The animals were euthanized and samples analyzed at specific times after LPS/D-GalN injection. The results show that intraperitoneal administration of LPS/D-GalN activated the complement pathway, as evidenced by the hepatic deposition of C3 and C5b-9 and elevated serum levels of the complement activation product C3a, the level of which was associated with the severity of the liver damage. C3a receptor (C3aR) and C5a receptor (C5aR) expression was also upregulated. Compared with wild-type mice, C3−/− mice survived significantly longer and displayed reduced liver inflammation and attenuated pathological damage following LPS/D-GalN injection. Similar levels of protection were seen in mice treated with C3aR antagonist,C5aRmAb or CR2-fH. These data indicate an important role for the C3a and C5a generated by the alternative pathway in LPS/D-GalN-induced FHF. The data further suggest that complement inhibition may be an effective strategy for the adjunctive treatment of fulminant hepatic failure

    Variability of wavefront aberration measurements in small pupil sizes using a clinical Shack-Hartmann aberrometer

    Get PDF
    BACKGROUND: Recently, instruments for the measurement of wavefront aberration in the living human eye have been widely available for clinical applications. Despite the extensive background experience on wavefront sensing for research purposes, the information derived from such instrumentation in a clinical setting should not be considered a priori precise. We report on the variability of such an instrument at two different pupil sizes. METHODS: A clinical aberrometer (COAS Wavefront Scienses, Ltd) based on the Shack-Hartmann principle was employed in this study. Fifty consecutive measurements were perfomed on each right eye of four subjects. We compared the variance of individual Zernike expansion coefficients as determined by the aberrometer with the variance of coefficients calculated using a mathematical method for scaling the expansion coefficients to reconstruct wavefront aberration for a reduced-size pupil. RESULTS: Wavefront aberration exhibits a marked variance of the order of 0.45 microns near the edge of the pupil whereas the central part appears to be measured more consistently. Dispersion of Zernike expansion coefficients was lower when calculated by the scaling method for a pupil diameter of 3 mm as compared to the one introduced when only the central 3 mm of the Shack – Hartmann image was evaluated. Signal-to-noise ratio was lower for higher order aberrations than for low order coefficients corresponding to the sphero-cylindrical error. For each subject a number of Zernike expansion coefficients was below noise level and should not be considered trustworthy. CONCLUSION: Wavefront aberration data used in clinical care should not be extracted from a single measurement, which represents only a static snapshot of a dynamically changing aberration pattern. This observation must be taken into account in order to prevent ambiguous conclusions in clinical practice and especially in refractive surgery

    Mapping and simulating systematics due to spatially-varying observing conditions in DES Science Verification data

    Get PDF
    Spatially-varying depth and characteristics of observing conditions, such as seeing, airmass, or sky background, are major sources of systematic uncertainties in modern galaxy survey analyses, in particular in deep multi-epoch surveys. We present a framework to extract and project these sources of systematics onto the sky, and apply it to the Dark Energy Survey (DES) to map the observing conditions of the Science Verification (SV) data. The resulting distributions and maps of sources of systematics are used in several analyses of DES SV to perform detailed null tests with the data, and also to incorporate systematics in survey simulations. We illustrate the complementarity of these two approaches by comparing the SV data with the BCC-UFig, a synthetic sky catalogue generated by forward-modelling of the DES SV images. We analyse the BCC-UFig simulation to construct galaxy samples mimicking those used in SV galaxy clustering studies. We show that the spatially-varying survey depth imprinted in the observed galaxy densities and the redshift distributions of the SV data are successfully reproduced by the simulation and well-captured by the maps of observing conditions. The combined use of the maps, the SV data and the BCC-UFig simulation allows us to quantify the impact of spatial systematics on N(z)N(z), the redshift distributions inferred using photometric redshifts. We conclude that spatial systematics in the SV data are mainly due to seeing fluctuations and are under control in current clustering and weak lensing analyses. The framework presented here is relevant to all multi-epoch surveys, and will be essential for exploiting future surveys such as the Large Synoptic Survey Telescope (LSST), which will require detailed null-tests and realistic end-to-end image simulations to correctly interpret the deep, high-cadence observations of the sky

    Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex

    Get PDF
    Citation: Garcia, B. L., Zhi, H., Wager, B., Hook, M., & Skare, J. T. (2016). Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. Plos Pathogens, 12(1), 28. doi:10.1371/journal.ppat.1005404Pathogens that traffic in blood, lymphatics, or interstitial fluids must adopt strategies to evade innate immune defenses, notably the complement system. Through recruitment of host regulators of complement to their surface, many pathogens are able to escape complement-mediated attack. The Lyme disease spirochete, Borrelia burgdorferi, produces a number of surface proteins that bind to factor H related molecules, which function as the dominant negative regulator of the alternative pathway of complement. Relatively less is known about how B. burgdorferi evades the classical pathway of complement despite the observation that some sensu lato strains are sensitive to classical pathway activation. Here we report that the borrelial lipoprotein BBK32 potently and specifically inhibits the classical pathway by binding with high affinity to the initiating C1 complex of complement. In addition, B. burgdorferi cells that produce BBK32 on their surface bind to both C1 and C1r and a serum sensitive derivative of B. burgdorferi is protected from killing via the classical pathway in a BBK32-dependent manner. Subsequent biochemical and biophysical approaches localized the anti-complement activity of BBK32 to its globular C-terminal domain. Mechanistic studies reveal that BBK32 acts by entrapping C1 in its zymogen form by binding and inhibiting the C1 subcomponent, C1r, which serves as the initiating serine protease of the classical pathway. To our knowledge this is the first report of a spirochetal protein acting as a direct inhibitor of the classical pathway and is the only example of a biomolecule capable of specifically and noncovalently inhibiting C1/C1r. By identifying a unique mode of complement evasion this study greatly enhances our understanding of how pathogens subvert and potentially manipulate host innate immune systems
    corecore